In [1]:
Copied!
import os
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Price\n') # 列名
f.write('NA,Pave,127500\n') # 每行表示一个数据样本
f.write('2,NA,106000\n')
f.write('4,NA,178100\n')
f.write('NA,NA,140000\n')
import os
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Price\n') # 列名
f.write('NA,Pave,127500\n') # 每行表示一个数据样本
f.write('2,NA,106000\n')
f.write('4,NA,178100\n')
f.write('NA,NA,140000\n')
要从创建的CSV文件中加载原始数据集,我们导入pandas
包并调用read_csv
函数。该数据集有四行三列。其中每行描述了房间数量(“NumRooms”)、巷子类型(“Alley”)和房屋价格(“Price”)。
In [2]:
Copied!
import pandas as pd
data = pd.read_csv(data_file)
print(data)
import pandas as pd
data = pd.read_csv(data_file)
print(data)
NumRooms Alley Price 0 NaN Pave 127500 1 2.0 NaN 106000 2 4.0 NaN 178100 3 NaN NaN 140000
2.2.2 处理缺失值¶
注意,“NaN”项代表缺失值。 为了处理缺失的数据,典型的方法包括插值法和删除法, 其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。 在这里,我们将考虑插值法。
通过位置索引iloc
,我们将data
分成inputs
和outputs
,
其中前者为data
的前两列,而后者为data
的最后一列。
对于inputs
中缺少的数值,我们用同一列的均值替换“NaN”项。
In [3]:
Copied!
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean()) # 用同一列的均值替换“NaN”项
print(inputs)
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean()) # 用同一列的均值替换“NaN”项
print(inputs)
NumRooms Alley 0 3.0 Pave 1 2.0 NaN 2 4.0 NaN 3 3.0 NaN
对于inputs
中的类别值或离散值,我们将“NaN”视为一个类别。
由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”,
pandas
可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。
In [4]:
Copied!
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
NumRooms Alley_Pave Alley_nan 0 3.0 1 0 1 2.0 0 1 2 4.0 0 1 3 3.0 0 1
2.2.3 转换为张量格式¶
现在inputs
和outputs
中的所有条目都是数值类型,它们可以转换为张量格式。
In [5]:
Copied!
import torch
X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
X, y
import torch
X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
X, y
Out[5]:
(tensor([[3., 1., 0.], [2., 0., 1.], [4., 0., 1.], [3., 0., 1.]], dtype=torch.float64), tensor([127500, 106000, 178100, 140000]))
本文总阅读量次